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A B S T R A C T   

Context: Quantification of yield gaps and understanding their causes in sunflower (Helianthus annuus L.) is a key 
requirement for developing management strategies to take advantage of the productive potential of this crop in 
Argentina. The term yield gap (Yg) refers to the difference between water-limited potential yield (Yw) and actual 
yield (Ya). 
Objective: This study quantified sunflower Yg across its full range of cropping regions of Argentina and used the 
results to identify potential causal factors. 
Methods: This study, structured around component climate zones, proceeds in two steps. In the first, Yg is 
calculated by three methods according different Yw estimators: (i) yield simulations using CROPGRO-Sunflower 
model; (ii) top yields of comparative yield trials; and (iii) top yields of farmer’s paddocks. Corresponding Ya 
values were estimated from national statistics. In the second, an independent database was established from the 
Relevamiento de Tecnología Agrícola Aplicada. Regression trees were used to explore associations between tech
nological variables and estimated Yg. 
Results: National sunflower Yg remained consistent across the different Yw estimation methods: 34 % via 
simulated yields, 40 % using comparative yield trials, and 34 % based on farmer’s paddock yields. Tillage system, 
phosphorus fertilization, and the adoption of herbicide- resistant and high oleic cultivars were key factors in 
explaining the smaller sunflower Yg in Argentina. 
Conclusions: Argentina has the potential to substantially increase its sunflower grain production, and key factors 
to increase current production were identified in this work. 
Implications: Increased sunflower production could boost Argentina’s exports, contributing significantly to its 
economy. The identified factors pave the way for designing practices that help farmers bridge the yield gap.   

1. Introduction 

Quantifying yield gaps (Yg) and understanding their causes in sun
flower (Helianthus annuus L.) crop in Argentina are crucial for devel
oping management strategies to unlock its full potential. Yield gap refers 
to the difference between water-limited potential yield (Yw) and actual 
farmer yield (Ya) (van Ittersum and Rabbinge, 1997; Evans and Fischer, 

1999). 
Sunflower is the fourth most important vegetable oil in the world to 

which Argentina, as one of the largest producers, contributes 7 % of 
global production (USDA, 2023; FAOSTAT, 2023). Despite its impor
tance, the extent of sunflower Yg remains uncertain. A previous study by 
Hall et al. (2013) estimated sunflower Yg at 29 % of Yw for the period 
2000–2007. In that assessment, regionalization of the national crop area 
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was based on the advice of crop experts, while Yw was estimated from 
comparative yield trials (CYT). 

Estimating Yw from yields of CYT or farmer’s paddocks involves 
percentile analysis to identify top yields (Egli and Hatfield, 2014a, 
2014b). This method risks overestimating Yw and Yg, especially in areas 
with erratic rainfall or variable soils (Shatar and McBratney, 2004; Fil
ippi et al., 2022). Crop simulation models offer a more precise Yw 
estimation, but require calibration with field data from current cultivars 
grown without limitations (Grassini et al., 2015). 

Understanding Yg causes can help to tune current crop management 
and, by doing so, increase sunflower production. With Yg estimates and 
access to crop technology information, a deeper understanding of these 
factors is possible (Mueller et al., 2012; Di Mauro et al., 2018; Mourt
zinis et al., 2018). The Relevamiento de Tecnología Agrícola Aplicada from 
Bolsa de Cereales de Buenos Aires (ReTAA, 2023) provides a compre
hensive database linking yield levels and technology application across 
Argentina. The most employed tillage system in the country is ’no-til
lage’ system but a proportion of the sunflower crop areas remain under 
’conventional tillage’ system. Tillage system impacts grain yield and 
fertilization response by influencing water and nutrient availability 
(Melaj et al., 2003). Sunflower farmers use both high oleic (HO) and 
conventional-oil (CO) cultivars, which differ in yield and oil quality. 
Conventional-oil cultivars exhibit higher grain and oil yields compared 
to HO cultivars (Del Gatto et al., 2015; Gaggioli et al., 2015). Nation
wide, nutrient limitations restrict crop yields, with fertilizer application 
often below requirements (Cruzate and Casas, 2017; Leguizamón et al., 
2023). Weeds are a challenge, with limited control options. Clearfield 
technology offers herbicide resistance for HR cultivars, while non-HR 
cultivars are susceptible (Tan et al., 2005). 

Many management factors contribute to Yg. Regression trees, a sta
tistical technique for linking multiple explanatory variables to a 
response variable in non-linear ways, have been used to identify Yg 
causes in farm fields (e.g., Di Mauro et al., 2018; Andrade et al., 2022). 
This method has no assumptions about data distribution and is suitable 
for analyzing multi-causal variables like Yg, offering automatic variable 
selection, interpretable variable interactions, and handling missing data 
(Hastie et al., 2001; Pichler and Hartig, 2023). 

This study is presented into two main sections, both utilizing 
regionalization from the Global Yield Gap Atlas (GYGA) project 
(Grassini et al., 2015; van Bussel et al., 2015; http://www.yieldgap.or 
g/methods) based on climatic variables that determine crop growth 
and development. In the first section, sunflower Yg was quantified and 
Yw was calculated using three estimators: (i) yield simulations using a 
sunflower crop model, percentile analysis of (ii) regional CYT network, 
and (iii) farmer’s paddocks. In the second section, an independent crop 
management database spanning six seasons, obtained after the ReTAA, 
was employed to explore the association between technological vari
ables and estimated Yg through regression trees. 

2. Materials and methods 

2.1. Databases 

A database for sunflower crop yields was developed, compiling in
formation at various spatial scales and organizational levels: (i) CYT, (ii) 
farmer’s paddocks, and (iii) departmental1 level. This comprehensive 
database encompasses crop information from the 2009/10 to the 2015/ 
16 cropping seasons for all climate zones (CZ) (Fig. 1). CYT information 
was provided by the National Cultivar Evaluation Network INTA- 
ASAGIR (Red INTA-ASAGIR, 2023) and member seed companies of 
ASAGIR (Table S1). Cazenave y Asociados, El Tejar, and AACREA 
(Argentine Association of Regional Agricultural Experimentation 

Consortia) contributed the information at the paddock yields. Lastly, 
departmental-level data was sourced through the Ministry of Agricul
ture, Livestock, and Fisheries (MAGyP, 2023). 

For the second section of the study, exploring the causes of Yg 
through an analysis of technological variables linked to sunflower yield 
levels, an independent database derived from the ReTAA by Bolsa de 
Cereales de Buenos Aires was used. The ReTAA has collected technolog
ical and production information of Argentina’s main grain crops by 
telephone interview of qualified informants. Initially every two years 
since 2010/11 cropping season but annually from 2016/17 to 2018/19. 
The data is geo-referenced and contains crop yields in response to inputs 
and management practices, referred to as the "technological setups". The 
collected information covers tillage system (no-tillage and conventional 
tillage); cultivars: high oleic (HO), conventional-oil (CO), herbicide- 
resistant (HR), and non-HR; sowing seed density; types and rates of 
applied fertilizers herbicides, insecticides, and fungicides, specifying 
active ingredients and quantities applied. Yield gap can be calculated for 
each of these "technological setups". This analysis focuses on data from 
2010/11, 2012/13, 2014/15, 2016/17, 2017/18, and 2018/19 crop
ping seasons. 

2.2. Quantification of the yield gaps 

Yield gaps estimations were made using as a cornerstone for climate 
regionalization the methodology developed within the framework of the 
GYGA (www.yieldgap.org). Within the GYGA methodology, explicit 
criteria are employed to delineate homogeneous CZ (Fig. 1). Each CZ 
corresponds to a particular combination of growing degree days, aridity 
index, and temperature seasonality (van Wart et al., 2013b). 

Fig. 1. Climate zones (CZ) (GYGA) identified by Roman numerals and outlined 
with yellow lines and sunflower average harvest area density per department 
(HAD, % of total department area) for the 2009/10–2015/16 period. The HAD 
values were calculated based on information from the Ministry of Agriculture, 
Livestock, and Fisheries. 

1 The second-level subdivisions of the provinces of Argentina are called 
departments. 
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Furthermore, the GYGA protocol establishes the use of locally calibrated 
and validated simulation models for estimating Yw. 

2.2.1. Procedures for Yg calculation 
For each cropping season, Yw was determined through three ap

proaches: (i) yield simulations using the CROPGRO-Sunflower model 
from the DSSAT platform (Rodriguez et al., 2023), (ii) percentile anal
ysis of yields of regional CYT network, and (iii) percentile analysis based 
on farmers’ paddock yields. Estimation of Ya was based on information 
provided by the Ministry of Agriculture, Livestock, and Fisheries 
(MAGyP, 2023). The Yg was calculated as the difference between Yw 
and Ya (Lobell et al., 2009). Since three Yw estimators were available, 
three methods were established to estimate Yg: 

Method 1 : Yg
(
kg ha− 1)

= Yw yield simulations–Ya (1)  

Method 2 : Yg
(
kg ha− 1)

= Yw based on CYT yields–Ya (2)  

Method 3 : Yg
(
kg ha− 1)

= Yw based on farmer’s paddocks yields–Ya
(3) 

The Yg expressed as a percentage was calculated for all three 
methods using Eq. (4), where the Yw value varies depending on the 
method employed: 

Yg(%) =

(
Yw − Ya

Yw

)

∗ 100 (4) 

Other authors often express Yg as a percentage of Ya rather than as a 
percentage of Yw (Fischer et al., 2014). Method 1 involved simulations 
using the CROPGRO-Sunflower model, adding complexity compared to 
methods 2 and 3. For this reason, it is separately described below. 

2.2.1.1. Method 1: yield gap from simulated Yw 
2.2.1.1.1. Selection of weather stations and soils. Selection of weather 

sources and data quality control followed the GYGA guidelines (Grassini 
et al., 2015; http://yieldgap.org/methods). Daily maximum and mini
mum temperature and precipitation data were derived from INTA (Na
tional Institute for Agricultural Technology; http://siga2.inta.gov.ar/) 
and SMN (National Weather Service; http://www.smn.gov.ar/) weather 
stations. Data from NASA-POWER (http://power.larc.nasa.gov/) were 
used as source of daily incident solar radiation. 

Following van Bussel et al. (2015), weather stations used for this 
study, hereafter termed reference weather stations (RWS), were selected 
based on sunflower-specific harvested area within a buffer zone area of 
100 km radius centered on each RWS and clipped by the CZ where the 
RWS was located. RWS were iteratively selected starting with the one 
with the greatest harvested area coverage until reaching ca. 50 % of 
sunflower-harvested area and more than 70 % coverage by the CZ where 
the RWS were located. The iterative selection process, resulted in the 
identification of 10 RWS (Figure S1), collectively covering 75 % of the 
national sunflower harvest area. Consequently, the quantification of 
sunflower Yg was made possible in seven CZs—specifically in CZ I, II, 
IV, VI, VII, XI, and XII—deemed representative of the broader sun
flower cropping area in Argentina. 

Dominant soil series were identified for each RWS buffer based on 
data provided by the Soil Institute of INTA (http://geointa.inta.gov.ar/). 
Dominant soil series (two to three per RWS) were selected based on (i) 
province-level soil maps (1:50,000 and 1:100,000), and (ii) farmer’s 
preference for growing sunflower in specific soils. 

2.2.1.1.2. Simulated cropping systems and Yg upscaling to national 
level. Simulations were performed using the revised CROPGRO- 
Sunflower with genetic coefficients developed for local cultivars 
(Rodriguez et al., 2023). Crop management practices for each RWS were 
retrieved from local informants. One renowned informant was identified 
per RWS and asked to provide all management practices required for the 
Yw simulation. Requested information included: dominant crop 

sequences, soil type, sowing dates, cultivar name and cycle length, and 
plant population density. To obtain the average sunflower Yw at the 
RWS level from the 2009/10 to the 2015/16 cropping seasons, contin
uous crop sequences were simulated. This involved considering water 
availability at the beginning of each crop season, factoring in both re
sidual moisture from the preceding harvest and the balance during 
fallow periods. Adhering to the protocol proposed by van Bussel et al. 
(2015), each simulation-soil combination was weighted based on its 
relative contribution to the total harvested area within the influence 
zone of the corresponding RWS. This approach enabled the estimation of 
the average sunflower Yw at the RWS level. 

The Yg was calculated at the RWS spatial scale as the difference 
between Yw and Ya for each season, spanning seven cropping seasons 
from 2009/10–2015/16. The Ya for each RWS was estimated using re
ported yields from departments (MAGyP, 2023) within the RWS’s in
fluence zone. Finally, Yg estimates were scaled up to CZ and the national 
level based on each RWS’s relative contribution to the sunflower har
vested area. This method enabled the estimation of Yg in seven CZs 
across Argentina, deemed highly representative of the entire sunflower 
harvested area in the country (Fig. 3, A). 

2.2.1.2. Methods 2 and 3: estimation and upscaling of the Yg using Yw 
derived from percentile analyses based on CYT and farmer’s paddock 
yields. The Yw estimation based on CYT was performed by calculating 
the 90th percentile of yields recorded in each cropping season within the 
same department. The analyzed cropping seasons spanned from 2009/ 
10–2015/16. Notably, each reported yield value in a CYT represents the 
average yield of a cultivar, typically based on four replicates per trial. 
The purpose of calculating the 90th percentile was to represent the 
performance of the best available cultivars in each cropping season. This 
choice was made because CYT often includes low-yielding cultivars, 
which could impact our Yw estimation if other summary measures, such 
as the average of CYT yields, were employed. 

The Yw estimation based on farmer’s paddock yields followed the 
methodology proposed by Egli and Hatfield (2014a, 2014b). This 
methodology consisted of calculating the 95th percentile of yields 
recorded in each cropping season within the same department. Using the 
95th percentile instead of the 90th percentile (used in CYT) result in a 
smaller amount of yield data for estimating Yw. This is useful in the case 
of farmer’s paddocks since they cover a larger area than CYT plots, and a 
smaller number of farmer’s yields can adequately represent Yw. The 
cropping seasons considered for this analysis also ranged from 
2009/10–2015/16. 

For methods 2 and 3 the difference between Yw and Ya for each crop 
season (seven crop seasons from 2009/10–2015/16) was calculated at 
the departmental spatial scale. Finally, Yg estimates at the departmental 
scale were scaled up to the CZ level and then to the national level, based 
on the relative contribution of each department and CZ to the sunflower 
harvested area. Utilizing available data, Yg quantification was per
formed across a total of eight CZ using Methods 2 and 3 (Fig. 3 B, and C). 

2.3. Determination of Yg causes through the ReTAA database analysis 

2.3.1. Disaggregation of the ReTAA database and scale spatial analysis 
Commencing with the georeferenced information from each infor

mant, we proceeded to aggregate ReTAA data at the departmental level. 
The variables reported in the ReTAA were grouped into those related to 
i) tillage system, ii) crop characteristics, iii) crop nutrition, or iv) crop 
protection (Table 1). A detailed description of the variables reported in 
the ReTAA can be found in the supplementary material (see section “S2. 
Description of the variables reported in the ReTAA”). 

A new estimation of Yg from the ReTAA database was conducted; 
however, this Yg was not included in the initial part of the study 
because: (i) it spans a different time frame, from 2010/11–2018/19, (ii) 
for the initial cropping seasons, data were collected every two cropping 
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seasons, and (iii) the limited quantity of data only allowed Yg estimation 
in 5 CZ (see Section 2.3.2 ). The calculation of Yw and Yg was con
ducted at the departmental spatial scale. The methodology involved 
estimating Yw based on the 95th percentile of reported Ya by ReTAA in 
each department and cropping season (i.e., employing the same method 
used for estimating Yw from farmer’s paddocks in the initial part of this 
study). Concurrently, Yg was calculated as the difference between Yw 
and each individual Ya value. Subsequently, the Yg values were 
upscaled at the CZ scale to enhance result interpretability. Figure S5 
shows the variability observed in Yw and Ya within each CZ. 

2.3.2. Analysis of the relationship between technological variables and Yg 
The technological information now associated with each Yg value at 

the departmental level was aggregated to the CZ spatial scale, using a 
grouping of departments with similar agro-ecological characteristics. In 
cases where a department straddled the boundary of two CZ, it was 
categorized within the CZ that covered more than 50 % of its area. Fig. 2 
shows the georeferenced ReTAA informants and their spatial alignment 
within the CZ of Argentina. Climate zones with less than 25 techno
logical setups were excluded from scrutiny, leaving five CZ in Argentina 
for analysis: I, II, IV, X y XII (Table S2). It is important to note that these 
CZ can be considered representative of the entire sunflower harvested 
area in Argentina. 

Regression trees were constructed to explore associations between 
technological variables and Yg. This analysis, being descriptive in na
ture, utilized the complete dataset within each CZ for tree fitting. 
Regression trees were fitted in R (R Development Core Team, 2023) 
using the rpart package (Therneau et al., 2015). Briefly, the rpart algo
rithm works by recursively splitting the dataset, creating subsets until 
meeting a predetermined termination criterion. The splitting criterion 
utilized in the rpart algorithm was based on the Gini index (Breiman 
et al., 1983; Mourtzinis et al., 2018). The result of this procedure is a 
tree-shaped plot (Figure S2), where each split generated nodes, named 
according to their position. Terminal nodes contain the final predictions 
for the response variable, and the sizes of both intermediate and ter
minal nodes follow predefined criteria. 

In this study, Yg values were used as the response variable, and all 
technological variables detailed in Table 1 were explanatory variables. 
To ensure sufficient statistical power, we required at least 5 % of the 
total observations in each CZ for each terminal node (Rattalino Edreira 
et al., 2017; Di Mauro et al., 2018). To avoid overfitting and improve 
interpretability, the maximum depth of the tree was set a priori at 10 
total nodes. The explanatory power of the regression tree was quantified 
using the coefficient of determination (R2) and the root mean square 
error (RMSE). Additionally, the p-values of the nodes in the regression 
trees were obtained through the R package sctest (Zeileis et al., 2002). 

The relative variable importance within each regression tree was 
determined using the “variable.importance” function of the rpart pack
age. This function provides a measure of the importance of each variable 
in the model (regression tree), aiding in identifying the most relevant or 
influential variables in the tree’s decision-making. Variable importance 
was determined by the extent of improvement in the impurity measure 
(Gini index in our analysis) achieved by dividing the tree nodes with that 
variable. A greater improvement indicates a higher variable importance. 

3. Results 

3.1. Spatial and temporal variation in Ya and Yw across Argentina 

The national average Ya (2009/10–2015/16) stood at 2.10 Mg ha− 1 

in Argentina (Table 2), and varied significantly across years and regions 
(Table S3). Climate zones situated in the northern part of the country (i. 
e. XI y XII, Fig. 1) showed smaller Ya and higher coefficients of inter
annual variation than the central and southern regions. Climate zone I 
presented the highest Ya, slightly differing from the Ya observed in CZs 
II, III, VI y VII (Table S3). The national average Yw was 3.19, 3.52, and 
3.19 Mg ha− 1 for method 1, 2 and 3, respectively (Table 2). Yw values 

Table 1 
Variables surveyed in the Relevamiento de Tecnología Agrícola Aplicada (ReTAA) by climate zone (GYGA) and their respective abbreviations. The classification of 
these variables in a classic crop yield analysis scheme is also presented: tillage system, crop characteristics, crop nutrition, or crop protection. The rationale for selecting 
only CZ I, II, IV, X, and XII is detailed in section 2.4.3. For the actual yield variable, the number of observations is indicated, followed by the range of observed yields 
enclosed in parentheses.  

Variable Abbreviation Classification CZ I CZ II CZ IV CZ X CZ XII 

Actual yield (Ya) 
(Mg ha− 1) 

- - 135 (1.0–3.4) 180 (1.1–3.2) 56 (1.0–3.1) 101 (1.0–3.0) 87 
(0.9- 
3.5) 

Tillage system (% under no tillage) Till system Tillage system X X X X X 
Adoption of High Oleic cultivars (HO) HO Cultivar Crop characteristics X X X X X 
Adoption of herbicide-resistant cultivars (HR) HR Cultivar Crop characteristics -protection X X X X X 
Seed density Seed density Crop characteristics X X X X X 
Nitrogen (N) post-sowing fertilization N Fert Crop nutrition X X X X X 
N rate fertilization N Rate Fert Crop nutrition X X X X X 
Phosphorus (P) fertilization at sowing P Fert Crop nutrition X X X X X 
P rate fertilization P Rate Fert Crop nutrition X X X X X 
Fallow herbicide Fallow herb Crop protection X X X X X 
Pre-emergent herbicide application Pre E Herb Crop protection X X X X X 
Post-emergent herbicide application Post E Herb Crop protection X X X X X 
Post emergent insecticide application Insecticide Crop protection X X X X X 
Post emergent fungicide 

application 
Fungicide Crop protection    X X  

Fig. 2. Informants (black dots) and their zone of influence (red circles) from 
the Relevamiento de Tecnología Agrícola Aplicada (ReTAA) for the period 
2010/11–2018/19 georeferenced within the climate zones (GYGA), identified 
by Roman numerals. 
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were smaller in CZ’s located in the northern part of the country 
compared to those in the central and southern regions, particularly for 
methods 2 and 3. However, with method 1 (Yw estimates based on yield 
simulations), yields in different zones were similar (Table S4). In terms 
of the interannual coefficient of variation (CV), method 1 recorded the 
highest value, while method 3 recorded the lowest (Table 2). 

3.2. Yield gaps of sunflower crop in Argentina 

The national average Yg varied across methods: 34 % for methods 1 
and 3 %, and 40 % for method 2 (Fig. 3, A, B, and C). This corresponds to 
Yg values of 1.09; 1.42 and 1.09 Mg ha− 1 for methods 1, 2, and 3, 
respectively. Significant variation in Yg was observed among CZ, 
method 1 (Fig. 3, A) revealed larger Yg in northern CZ XI (53 % or 1.65 
Mg ha− 1) and XII (54 % or 1.67 Mg ha− 1) compared to southern CZ I, II, 
and IV, where gaps ranged between 26 % and 46 % or 0.84–1.41 Mg 
ha− 1. For method 2 (Fig. 3, B), percentage Yg were also larger in CZ XI y 
XII (50 % for both), while gaps in other CZ varied between 33 % and 
43 %. However, method 2 did not show a consistent trend in Yg in 
megagrams per hectare based on CZ, fluctuating between approximately 
1.10 and 1.90 Mg ha− 1 (Table S5). Finally, with method 3 (Fig. 3, C), 
percentage Yg were also larger in CZ XI and XII compared to other CZ 
(except CZ IV). But expressed in kilograms per hectare, Yg were similar 

across CZ, ranging between 0.94 and 1.10 Mg ha− 1 approximately 
(Table S5). 

3.3. Association between technological variables and Yg 

Regression trees identified and ranked the most important variables 
influencing Yg in each CZ (Fig. 4, Figure S6, Table 3). These regression 
trees enabled a moderate variability explanation, ranging from 29 % to 
48 %. The tillage system emerged as one of the management variables 
strongly associated with Yg. Larger adoption of no-tillage system was 
consistently linked to smaller Yg. It consistently occupied a position 
between the first and fourth nodes in the regression tree model for all CZ, 
except for CZ I (Fig. 4. A; Figure S6). Similarly, in CZs II, IV, X and XII, 
the tillage system ranked among the top two most important variables 
(Table 3). Among the crop characteristics, the adoption of HR and HO 
cultivars proved to be the most crucial in explaining Yg. Smaller Yg 
values were associated with high and moderate adoption of HR and HO 
cultivars. It consistently ranked among the top six most influential fac
tors across all CZ (Fig. 4. B; Figure S6). It’s worth noting that HR cul
tivars contribute not only to crop characteristics but also to crop 
protection (Table 1). Within the crop nutrition, the P fertilization (P Fert 
and P Rate Fert variables) emerged as crucial in explaining sunflower Yg 
in Argentina (Table 3). Phosphorus fertilization rates greater than 
8.5–14 kg ha− 1 (the range for all CZ) were consistently associated with 
smaller Yg. Concerning N nutrition (N Fert and N Rate Fert variables), 
this factor was less important than P nutrition; however, it ranked 
among the six most important variables in all zones (Table 3). 

Regarding weed protection, the importance of the variable adoption 
of HR cultivars in explaining Yg has already been previously highlighted 
within crop characteristics variables. The application of herbicides in 
fallow, pre-emergence, and post-emergence periods was found to be of 
minor importance in explaining Yg overall. As for insect protection, 
post-emergence insecticide application was associated with larger Yg in 
CZ I and XII. The application of post-emergence fungicides (crop disease 
protection) could only be analyzed in CZ X y XII due to data availability 
(Table 1). No association of this variable with larger or smaller Yg values 

Table 2 
Average national actual yield (Ya), water-limited yield potentials (Yw) based on 
three methods, and yield gaps (Yg) for sunflower in Argentina. Method 1 (Yw 
estimates using CROPGRO-Sunflower model); method 2 (Yw based on 90th 
percentile from yields of CYT); method 3 (Yw based on 95th percentile from 
farmer’s paddocks yields).  

Method Ya (Mg ha− 1)a Yw (Mg ha− 1)a Yg (Mg ha− 1)b 

1 2.10 (21 %) 3.19 (34 %) 1.09 (34 %) 
2 3.52 (23 %) 1.42 (40 %) 
3 3.19 (17 %) 1.09 (34 %)  

a Number between brackets shows the coefficient of variation (in %). 
b Number between brackets shows Yg as a percentage of Yw. 

Fig. 3. Yield gap maps for sunflower crop across climate zones (CZ) (GYGA) in Argentina. Climate zones are delimited by yellow lines and identified by Roman 
numerals. Green shaded areas indicate sunflower average harvest area density per department (HAD, % of total department area) for the 2009/10–2015/16 time 
period. Yw was estimated by: A) simulations with CROPGRO-Sunflower (method 1), B) 90th percentile based on CYT yields (method 2) and C) 95th percentile based 
on farmer’s paddocks yields (method 3). Water-limited yield potential (Yw, Mg ha− 1, in numbers) for CZ level in numbers in each pie chart. Actual yields (orange for 
A, red for B and pink for C) and yield gaps (blue) are shown, both relative to the Yw (Mg ha− 1, in numbers), in each pie chart. 
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Fig. 4. A) Example of regression tree analysis for the climate zone (GYGA) II. The response variable was Yg expressed as a percentage of Yw, while the explanatory 
variables were those detailed in Table 1. The number associated with "till system" represents the percentage of no tillage. B) Variable importance scores for each 
predictor included in the fitted regression tree model. 

Table 3 
Top-six ranking of variable importance for the 5 CZs (GYGA) obtained from the fitted regression trees. A color code has been used to facilitate the visualization of 
variables across the table. The table also presents the number of data (n) used for model fitting, the coefficient of determination (R2), and the root mean square error 
(RMSE).  
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was found. Additionally, this variable ranked low in importance in the 
two analyzed CZ (Figure S6, C2 and D2). 

4. Discussion 

This study contributes important insights into the magnitude and 
underlying causes of Yg in sunflower crops of Argentina. It establishes 
that estimates of national Yg range between 34 % and 40 % of Yw, 
depending on the methodology employed. These values are larger than 
those of Hall et al. (2013), who estimated a national Yg of 29 % during 
2000–2007. In absolute terms, Yg are 1.10–1.42 (1.20 mean) and 0.75 
Mg ha− 1, respectively. The explanation is found in changes of Ya and 
Yw. While Hall et al. (2013) determined a national Ya of 1.85 Mg ha− 1, 
our estimate for the later period (2010–2016) was 2.10 Mg ha− 1. Thus, 
despite an observed increase in the Ya of sunflower across decades, the 
Yg also increased, highlighting the potential for further yield improve
ments in Argentina’s sunflower production. The Yw values estimated in 
this study are 3.20–3.50 (3.30 mean) Mg ha− 1, while Hall et al. (2013) 
estimated a Yw of 2.6 Mg ha− 1. 

Aramburu Merlos et al. (2015), using simulation models to estimate 
Yw (method 1), found that in Argentina, the Yg for wheat and maize was 
41 %, and for soybean, it was 32 %. In comparison, our assessment of 
sunflower, using the same methodology, resulted in a Yg of 34 %, sug
gesting that sunflower crop exhibits an intermediate gap between 
wheat-maize and soybean in Argentina. On a global scale, the sunflower 
crop in Argentina presented a moderate Yg. Argentina’s sunflower Yg 
surpassed those reported for some major high-technology cereal-
producing regions, e.g., wheat in Germany and maize in Nebraska, USA, 
which exhibit gaps of ~20 % (Grassini et al., 2011; van Wart et al., 
2013a). Conversely, sunflower Yg in Argentina is considerably smaller 
than those reported for smallholder production systems in Sub-Saharan 
Africa, where gaps reach up to 80 % of the Yw (Tittonell and Giller, 
2013; Kassie et al., 2014). 

Water-limited potential yield estimation based on CYT yields, 
method 2, showed the highest national Yw value and, consequently, the 
highest national Yg compared with model simulations, method 1, and 
farmeŕs paddock yields, method 3. The Yw values obtained through 
method 2 in each of the CZ did not surpass the yields of the top decile of 
CYT reported by Hall et al. (2013) for similar zones. While Hall et al. 
(2013) argue that the top decile of CYT should not be considered a 
benchmark for Yg analysis due to its exceptional nature (i.e. the best 
cultivars available), we contend that it is an appropriate reference. The 
yields of the top decile in our database were associated with the 3–4 
highest-yielding cultivars in each department and cropping season. This 
is optimal, as Yw, by definition, should be calculated based on the best 
available cultivars. However, it is important to note that, due to other 
factors, there may be an overestimation of Yw when using CYT. These 
factors include i) the absence of border effect in CYT (which is present at 
the farmer’s paddocks and results in a reduction in average yield), ii) 
harvesting is done more carefully in CYT plots, leading to lower grain 
losses compared to the farmer scale (Calviño et al., 2019; Rodriguez 
et al., 2019). Furthermore, as previously mentioned, methods relying on 
percentile analysis carry the risk of overestimating Yw, especially in 
areas where rainfall is variable, and soils exhibit great variability 
(Agrawal et al., 2008; Licker et al., 2010; Hall et al., 2011). 

On the contrary, method 3, also relying on percentile analysis but 
based on farmer’s paddock yields, resulted a smaller Yg compared to 
method 2. However, method 3 introduces two significant risks. Firstly, 
there is the potential of overestimating Yw, particularly in regions with 
variable rainfall and diverse soils, as discussed earlier. Secondly, there is 
also the risk of underestimating Yw if none of the farmers adopt man
agement practices aimed at achieving Yw (Fischer et al., 2009; Sadras 
et al., 2015). Economic, structural, or cultural factors can deter farmers 
from optimal practices like using high-yielding cultivars, proper fertil
ization, or effective weed control. In such cases, the yields of farmers 
may not accurately reflect Yw (Tittonell et al., 2008; Pradhan et al., 

2015). This underestimation issue is less likely with the CYT approach 
(method 2), where management practices for Yw attainment are 
generally implemented (Agrawal et al., 2008; Hall et al., 2013). 

When comparing the outcomes of method 1 (Yw based on simula
tions) with method 3 (Yw based on farmer’s paddocks), a notable sim
ilarity was observed in the values obtained. Despite observing moderate 
variability across the zones, the estimated Yg for each zone showed a 
high correlation (Figure S4). Notably, Egli and Hatfield (2014) also 
calculated maize Yw in the USA using the analysis of percentiles of 
observed farmer’s paddock yields. Their findings suggested that these 
values were lower than those estimated through simulation models 
(Grassini et al., 2011). Although Egli and Hatfield (2014a) did not 
suggest a rationale for the disparities between observed Yw and simu
lated Yw, it is crucial to highlight that studies estimating Yw and Yg 
using simulation models (Aramburu Merlos et al., 2015; Filippi et al., 
2022) often lack a detailed description of the calibration and evaluation 
procedures of such models. In this study, a rigorous model calibration 
and evaluation was conducted, which is described in full detail by 
Rodriguez et al. (2023). 

This study has identified multiple technological factors that 
contribute to the Yg in sunflower crop in Argentina. Phosphorus fertil
ization stands out as a key factor across diverse regions, mirroring the 
overall scenario of this work where nutrient input to the crop falls 
substantially below the amount removed by grain harvest. Regression 
trees explained moderate Yg variability (30–48 %), exceeding values 
reported for analysis of soybean Yg in the USA by Mourtzinis et al. 
(2018) (10 %-34 %). The adoption of a no-tillage system was associated 
with smaller Yg. This association likely stems from several factors, 
including its contribution to increased soil water holding capacity and 
greater water availability for the crop (Brandt, 1992; Melaj et al., 2003). 

Lower Yg values were observed in association with high and medium 
levels of HR cultivar adoption. This observation could have two expla
nations: i) During the 2011–2019 period, HR cultivars exhibited equal or 
larger Ya than non-HR cultivars, as indicated by data from the National 
Cultivar Evaluation Network INTA-ASAGIR (Figure S8). Consequently, 
the adoption of HR cultivars could be related to choosing cultivars with 
larger yield potential, translating into larger Ya and, therefore, smaller 
Yg. ii) The second possible explanation is that HR cultivar adoption is 
associated with crop protection through more effective weed control. In 
contrast, the adoption of HO cultivars may have a more indirect expla
nation. While HO cultivars generally have smaller yield potential than 
CO cultivars (Del Gatto et al., 2015; Gaggioli et al., 2015). Based on this 
premise, one might anticipate that technological approaches predomi
nantly adopting HO cultivars would be associated with larger Yg. 
However, our results contradict this expectation. We observed a 
consistent association between HO cultivar adoption and smaller Yg 
across all analyzed CZ. In our analysis, the adoption of HO cultivars is 
possibly correlated with other variables not recorded in the ReTAA (for 
example, sowing date, fallow duration, fertilization with nutrients such 
as Boron (B), Potassium (K), and Zinc (Zn), among others) that could 
explain a reduction in Yg. 

The four variables related to crop nutrition (P Fert, P Rate Fert, N 
Fert, N Rate Fert) showed a direct association with Yg across all analyzed 
zones (CZ). Phosphorus fertilization rate emerged as the most significant 
link to Yg. These findings align with those reported by Parra et al. (2003) 
and Sainz Rozas et al. (2012), in CZ I, II, III, IV, and X. These authors 
demonstrated that, in these zones, agricultural activity without 
adequate nutrient replenishment has resulted in a significant decrease in 
soil P levels limiting crop yields. This observation mirrors the results 
obtained in this study, where it was noted that nine analyzed CZ 
exhibited negative P and N balances (Figure S7). Nitrogen crop nutrition 
had relatively less importance than P nutrition in explaining Yg in all CZ 
analyzed. On a global scale, Mueller et al. (2012) demonstrated that 
global crop production could increase between 45 % and 70 % for most 
crops by closing the Yg through nutrition and water management 
improvements. 
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As for the relevance of crop protection technologies, the results are 
less clear. The application of insecticides to the crop explained part of 
the Yg in the CZ I and X, but contrary to expectations, the application of 
insecticides was associated with larger values of Yg than the non- 
application of insecticides. One hypothesis regarding these results is 
that the "yes" level would indicate scenarios, for example, years and/or 
sites within a CZ, where insect damage caused a reduction in crop Ya 
despite the application of insecticides. Weed control had less relative 
importance than other factors in explaining sunflower Yg (Satorre and 
Andrade, 2021), except for the adoption of HR cultivars. Finally, disease 
protection, evaluated through the application of fungicides, showed low 
importance in the two CZ analyzed (X y XII). 

The most significant limitation of our approach in analyzing the 
causes of Yg is that there are potential explanatory variables for sun
flower Yg that are not recorded in ReTAA database. Some of these 
variables include sowing date (De la Vega and Hall, 2002a, b); bird 
damage (Bucher and Aramburú, 2014); incidence and severity of fungal 
diseases (Markell et al., 2015); the preceding crop (Salado-Navarro y 
Sinclair, 2009); occurrences of extraordinary adversities (Sierra et al., 
1993; www.ora.gob.ar) and the characterization of cultivars considering 
aspects such as yield potential, resistance or tolerance to other biotic 
adversities, susceptibility to lodging, cycle length, among others (De la 
Vega and De la Fuente, 2010). 

5. Conclusions 

Yield gap assessment performed in this study indicates that 
Argentina has the potential to substantially increase grain production of 
sunflower. This study provides novel insights into the association be
tween sunflower Yg and its causes. Tillage system, P fertilization, and 
the adoption of herbicide-resistant cultivars were key factors in 
explaining sunflower Yg in Argentina. It is crucial to focus future ini
tiatives on constructing more detailed crop management databases 
(including bird damage, incidence and severity of fungal diseases, and 
cultivar characterization, among others) to enhance the understanding 
of other potential causes of Yg in sunflower and other extensive crops in 
Argentina. Despite limitations, this study makes a significant contribu
tion to bridging the sunflower Yg in Argentina. 
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