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Abstract
Most crop yield forecast models operate at coarse scales (e.g., county or region) or

need extensive input data for finer resolutions. Here, we present maize (Zea mays L.)

yield forecast models that require minimal user data and operate at field and regional

scales throughout the growing season. Using 1853 maize field-years in Argentina,

with known location, sowing date, and yield, our models leveraged absorbed radiation

(from satellite imagery), temperature-based phenology, regional site-year properties,

El Niño-Southern Oscillation (ENSO) phase predictions, and sowing period. At the

field scale, our models achieved high accuracy at physiological maturity, with a mean

error of 1 t ha−1 (16%). Yield forecasts were mainly driven by absorbed radiation dur-

ing the reproductive phase and a regional factor. Early-season forecasts incorporated

ENSO and sowing period, but with reduced accuracy. When scaled to regional fore-

casts, the models performed even better, with a mean error of 0.3 t ha−1 (4%). These

results combine a novel case of yield forecast because of the low data requirements

from users, high anticipation (30–90 days before harvest), and good levels of accu-

racy at both field and regional scales. Additionally, the models’ interpretability makes

them valuable diagnostic tools for post-season analysis.

Plain Language Summary
Most crop yield forecasting models either work at large scales, like counties or

regions, or need a lot of detailed input data to work at the field scale. In this study,

Abbreviations: APAR, absorbed photosynthetically active radiation; CP, critical period; ENSO, El Niño-Southern Oscillation; fAPAR, fraction of absorbed
photosynthetically active radiation; HI, harvest index; MAE, mean absolute error; NDVI, normalized difference vegetation index; PARinc, incident
photosynthetically active radiation; R6, physiological maturity; RUE, radiation use efficiency.
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we developed simple models to forecast maize yields at both the field and regional

scales, requiring minimal data from users. Our models use satellite data on sunlight

absorbed by crops, temperature, and information about sowing dates and locations.

We tested them with data from 1853 maize fields in Argentina. At the field scale,

the models had an average error of 1 t/ha (16%), and at the regional scale, they per-

formed even better, with an error of just 0.3 t/ha (4%). The most important factor for

accurate forecasts was sunlight absorbed during the reproductive phase of the crop.

These models allow farmers and researchers to forecast yields earlier before har-

vest and understand what influences crop performance, supporting better agricultural

decisions.

1 INTRODUCTION

Forecasting crop yield is important for logistical, social, scien-
tific, and financial purposes (Benami et al., 2021; Burke et al.,
2020; Lobell, 2013). Early yield forecasts allow various stake-
holders in the crop production and commercialization chain to
make informed decisions (Paudel et al., 2022; van der Velde
et al., 2019). For instance, at the field scale, farmers can orga-
nize harvest and storage logistics, take positions in the futures
market, or determine optimal management practices. Addi-
tionally, these field-scale forecasts can be scaled up to support
regional crop monitoring systems, enabling governments or
NGOs to anticipate production and design better strategies to
ensure food security (Deines et al., 2021). Maize (Zea mays
L.), in particular, is grown worldwide and valued as food for
human or animal consumption, and more recently, for its use
in biofuel production (FAO, 2023). For this reason, having an
accurate forecasting system for maize yield that requires mini-
mal data to operate and is applicable at both field and regional
scales is highly important.

Different approaches have been suggested to forecast crop
yield at different scales (Basso & Liu, 2019). At the regional
level, regression models between yield and climate variables,
such as temperature or precipitation, were used very early on
(Murata, 1975; Thompson, 1969). At the field or sub-field
level, crop simulation models forecast yield based on sev-
eral input variables such as genotype, weather conditions, and
management practices (Chipanshi et al., 1997; Hodges et al.,
1987). However, they need extensive input data, which lim-
its their practical application. In contrast, models based on
remote sensors that provide information on radiation absorp-
tion require less input data to operate effectively at the field
scale (Peralta et al., 2016; Schwalbert et al., 2018).

Combining these approaches has been the basis for
developing operating systems that monitor crop status in
real time and forecast yield (Basso & Liu, 2019; Fritz et al.,
2019; Huang et al., 2019; Johnson, 2014). Schauberger et al.
(2020) summarized key features of the state of the art in crop
yield forecasts. They concluded that most of the research

(1) focuses on wheat (Triticum aestivum), maize, and rice
(Oryza sativa); (2) is carried out in the United States and
China; (3) forecasts at coarser scales, such as the county or
national scales, with only 17% at the field scale; (4) achieved
R2 between 0.6 and 0.8, with few studies reporting other
accuracy metrics; and (5) lacks validation of their results
with independent data not used for calibration.

To achieve accurate and efficient yield forecasts from field
to regional scales, it is crucial to develop models that require
minimum input data from users. Additionally, it is also desir-
able that the models are informative and interpretable. A
convenient framework for achieving this type of model is
the crop growth and yield analysis based on the absorption
of solar radiation and its conversion efficiency into biomass
and yield (“Monteith model,” Monteith, 1972; Monteith,
1994). Thus, yield can be represented as the product of the
accumulation of incident photosynthetically active radiation
(PARinc) during the crop cycle, the fraction of it that is
absorbed (fraction of absorbed photosynthetically active radi-
ation [fAPAR]), the radiation use efficiency (RUE), which
represents the conversion of absorbed radiation into above-
ground biomass, and the harvest index (HI), which quantifies
the yield per unit of aboveground biomass (Equation 1):

Yield = PARinc × fAPAR × RUE × HI (1)

This model has been used to explain crop yield variation in
terms of absorbed radiation inferred from remote sensing data
(e.g., normalized difference vegetation index [NDVI], GCVI,
Gitelson et al., 2014; Pellegrini et al., 2020) and conversion
efficiency derived from empirical modeling (Andrade et al.,
2022; Rattalino Edreira et al., 2020).

Combining the “Monteith model” with the use of remote
information derived from satellite images has several advan-
tages. The fine spatial and temporal resolution of current
satellites enables crop data collection at the field or sub-field
scale, which may be used to train models that forecast yield
during the crop cycle without requiring additional data. In
turn, the “Monteith model” establishes a common language



MENENDEZ-COCCOZ ET AL. 3 of 16

among users, including those unfamiliar with remote sensing
concepts, so that yield variations are explained in terms
of their eco-physiological components (PARinc, fAPAR,
RUE, and HI), and the model may be used to diagnose
field performance. Combining satellite information with
Monteith’s approach provides more information than simple
correlations between yield and vegetation indices, requires
low-input data from users, and can work at different spatial
and temporal scales.

The objectives of this study were to (1) develop field-scale
models to forecast maize yield using absorbed radiation up to
physiological maturity (R6); (2) develop field-scale models
to forecast yield at different stages of the crop cycle; and (3)
scale up the results from the previous objectives to forecast
yield at the regional scale throughout the growing season.

2 MATERIALS AND METHODS

2.1 General description of the methodology

The methodology of this study consisted of six steps:

1. We compiled a database with yield, sowing date, and
latitude-longitude of 1853 maize fields across four years
(2017–2021) and eleven regions that encompass nearly the
entire maize-growing area of Argentina (Figure 1A,B).

2. For each field-year, we extracted time series of tempera-
ture, PARinc, and NDVI (Figure 2).

3. We estimated absorbed radiation during the entire crop
cycle and particular phenological stages from NDVI and
PARinc (Figure 2).

4. To achieve the first objective, we calibrated and validated
regression models that forecasted the yield of each field-
year from absorbed radiation up to R6. Additionally, we
evaluated whether the models differed by region, El Niño-
Southern Oscillation (ENSO) phase, or sowing period.

5. For the second objective, we calibrated and validated
regression models using the information on absorbed
radiation at different time intervals from the sowing date.

6. For the third objective, we assessed forecasted yield at a
regional scale throughout the crop season, as fields were
sown and progressed throughout their cycle.

2.2 Study area

The study area extends from 26˚ S to 39˚ S and from 57˚
W to 66˚ W (Figure 1A). It covers approximately 90% of
the Argentinean maize production area (ReTAA, 2022). Envi-
ronmental conditions and maize management practices vary

Core Ideas
∙ Low-data input models to forecast maize yield at

field and regional scales.
∙ Models incorporate phenology-adjusted absorbed

radiation and production regions.
∙ Field-scale forecasts had a mean error of 1 t ha−1

(16%).
∙ Regional-scale forecasts had a mean error of 0.3 t

ha−1 (4%).
∙ Interpretable models explain yield variations

across fields, years, and regions.

widely across the area (Maddonni, 2012; Satorre & Andrade,
2022). The frost-free period decreases from 180 days in the
north to 140 days in the south. Similarly, the average annual
temperature decreases from 21.5˚C to 15.7˚C. Precipitation
decreases from east to west, from approximately 1000 to
600 mm per year. Maize is grown in extensive fields. In our
database, the median sowed area of a single field within a
farm was 72 ha, with a minimum of 8 ha and a maximum of
700 ha. A >95% of the sowing area is under the “no-till” sys-
tem. Sowing density varies from 3 plant m−2 in yield-limiting
environments to 11 plant m−2 in high-production environ-
ments. The sowing dates are divided between early and late
sowings. Since most of the maize crops in Argentina are rain-
fed, the main difference between early and late sowings is the
development of the cycle in relation to water balance. In the
central region of Argentina (32–38 ˚S), early-sown maize is
sown in September–October, and its critical period (CP) (Cer-
rudo et al., 2013) occurs during late December and the first
days of January (Cirilo & Andrade, 1994; Otegui et al., 1995).
Late-sown maize, on the other hand, is sown in December–
January, and its CP occurs along February and March (Mercau
& Otegui, 2014). Therefore, early sowing is carried out where
favorable water conditions are expected in January, while late
sowing is carried out where unfavorable water conditions are
expected in January (Otegui et al., 2021). Maize grown in
the northern region (latitude <32˚S) is almost totally sown
in December–January to avoid the risk of heat shock during
the CP (Otegui et al., 2023).

We partitioned the area into eleven regions defined by
the CREA movement (Figure 1A,B). The CREA movement
brings together >2000 farming companies that meet monthly
in regional groups to share experiences and information, while
also generating technology and knowledge for the sustainable
development of companies (https://www.crea.org.ar/mision-
y-vision/). Thus, farming companies within each region share
not only information about edaphoclimatic conditions but also
the guidelines for crop management.

https://www.crea.org.ar/mision-y-vision/
https://www.crea.org.ar/mision-y-vision/
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F I G U R E 1 Study area and example of delimitation of production field boundaries. (A) Study area. The red dots refer to the 1853 field
observations during the four seasons, solid black lines with numbers refer to the eleven regions, and dashed black lines refer to Argentina’s national
boundaries. Fields outside regions were assigned to the nearest one. (B) Location in South America and production regions as classified by CREA.
(C) Delimitation of fields. The white dots refer to the geographic coordinates reported by the farmer, and the yellow polygons refer to the boundaries
of the fields delimited by photointerpretation.

2.3 Agronomic database

We compiled a field-scale database from the agricultural
traceability database of CREA (DAT CREA, https://crea.org.
ar/). To be included, maize fields had to be destined to grain
production and have geographic coordinates. These fields
were sown with maize in at least one of four growing sea-
sons: 2017–2018, 2018–2019, 2019–2020, and 2020–2021.
Initially, the dataset comprised 3031 unique field-year obser-
vations that included information on year, field, sown area,
sowing date, and yield as reported by farmers (typically at
14% moisture).

Using geographic processing, we delimited a polygon
of the field boundaries around each geographic coordinate
by visually inspecting “Sentinel-2” satellite images from
January–February of each growing season. We verified that
the area of the drawn polygon matched the area reported in
the database (Figure 1C, QGIS Development Team, 2022).
As a result, we discarded 449 records because of incorrect
geographic coordinates or fuzzy boundaries.

2.4 Climate and vegetation index databases

We compiled a second database with daily PARinc and
mean temperature for each field-year. For PARinc, we
obtained monthly averages from the Instituto Nacional de

Pesquisas Espaciais (INPE). INPE reports monthly aver-
age PARinc with a spatial resolution of 4 km (Martins
et al., 2017). We assumed each monthly record to corre-
spond to the 15th of the month and estimated daily data by
linear interpolation between subsequent records. For daily
mean temperature, we obtained the data from the Pre-
diction of Worldwide Energy Resource (NASA POWER,
https://power.larc.nasa.gov/data-access-viewer/), which rep-
orts this variable with an approximate spatial resolution of
60 km.

We compiled a third database with daily NDVI for each
field-year during the crop cycle. We used the “MODIS NDVI
16-Day 250 m” product on board the “TERRA” satellite
(MOD13Q1, Didan et al., 2015). The product has a spatial
resolution of ∼250 m and provides the maximum NDVI value
every 16-day period, which we assigned to the day of year
(DOY) reported by the product as the representative date for
that period. Data were extracted from pixels that presented at
least 90% of their area within the field polygon. We obtained
daily data by linear interpolation. We discarded 724 field-year
combinations because they either had data gaps longer than 40
days (due to low-quality informed from the product) or were
not covered by at least one pixel (Irisarri et al., 2018). The
median number of pixels per field-year was 6 (∼37.5 ha), with
a minimum of 1 and a maximum of 110 pixels. The median
number of NDVI observations per field-year was 9, with a
minimum of 6 and a maximum of 11.

https://crea.org.ar/
https://crea.org.ar/
https://power.larc.nasa.gov/data-access-viewer/
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F I G U R E 2 Method for estimating the absorbed radiation
(absorbed photosynthetically active radiation [APAR]) for each
field-year based on normalized difference vegetation index (NDVI) and
its conversion to fraction of absorbed photosynthetically active
radiation (fAPAR) and APAR. Just for illustration purpose, we show 20
random fields from the 2020-2021 crop season (dotted lines) for early

(Continues)

F I G U R E 2 (Continued)
and late sowings. Solid lines represent their smoothed fit. (A) Time
series of NDVI from the MODIS sensor. (B) fAPAR as a function of
crop thermal time from emergence. fAPAR was derived from the model
by Gitelson et al. (2014), and thermal time was derived from the model
by Maddonni (2012). (C) Daily APAR, the product of fAPAR and
incident PAR, as a function of thermal time. The shaded green area
corresponds to the vegetative phase (0˚C–900˚C day), the shaded
orange area corresponds to the reproductive phase (900˚C–1800˚C
day), and the area delimited by black dotted lines corresponds to the
critical period (680˚C–1100˚C day).

T A B L E 1 Phenological phases and their thermal time and base
temperature as considered in Maddonni (2012).

Phenological
phase

Thermal time
(˚C day)

Base temperature
(˚C)

S–VE 90 10

VE–R1 900 8

R1–R6 900 8

Note: S–VE: Sowing–emergence. VE–R1: Emergence-silking. R1–R6: Silking–
physiological maturity.

2.5 Estimation of crop cycle, phenological
stages, and absorbed radiation

We considered the following phenological phases for each
field-year (Ritchie & Hanway, 1982): sowing (S)—emergence
(VE), VE—female flowering or silking (R1), and R1—
physiological maturity (R6). In addition, we assigned the CP
as 220˚ days before and 200˚ days after R1 with a base tem-
perature of 8˚C (Cerrudo et al., 2013; Otegui & Bonhomme,
1998). The sowing date was obtained from the agronomic
database, while the rest of the phases were estimated using a
thermal time accumulation model based on temperature data
from the climate database (Maddonni, 2012; Table 1). The
whole crop cycle for each field year was considered as the
period between VE and R6. For those field-years that expe-
rienced a daily average temperature lower than 8˚C during
the final reproductive phase, the crop cycle was interrupted
because early frosts at this stage stop effective grain filling.
Similarly, for those field-years that had not reached R6 by June
1, the crop cycle was interrupted due to the possibility of frost
damage.

For each field-year, we calculated the absorbed radiation
(absorbed photosynthetically active radiation [APAR]) dur-
ing the entire crop cycle (VE–R6, VE–R1, and R1–R6) and
the CP in three calculations (Figure 2). First, we transformed
NDVI to the fAPAR. This was done using empirical models
between field-measured fAPAR by maize and MODIS NDVI
(Gitelson et al., 2014). For the VE–R1 phase, the model was
fAPAR = 1.35 NDVI–0.32 (R2 = 0.95), while for the R1–R6
phase, the model was fAPAR= 1.89 NDVI – 0.78 (R2 = 0.93).
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T A B L E 2 Variation of relevant components of Monteith’s model (Equation 1) in the database: Total incident radiation (incident
photosynthetically active radiation [PARinc]), average absorption efficiency (fraction of absorbed photosynthetically active radiation [fAPAR]), total
absorbed radiation (APAR), yield, and grain conversion efficiency.

Parameter PARinc (MJ m−2) Average fAPAR APAR (MJ m−2) Yield (t ha−1)
Grain conversion
efficiency (g MJ−1)

Minimum 790 0.11 150 3.4 0.05

Percentile 25 1312 0.49 704 6.22 0.84

Mean 1439 0.55 784 8.00 1.01

Median 1495 0.54 797 8.16 1.03

Percentile 75 1575 0.61 873 9.96 1.19

Maximum 1931 0.78 1177 15.30 1.79

When necessary, negative fAPAR values were set to 0, while
values >0.95 were set to 0.95. Second, we calculated daily
APAR as the product of daily fAPAR and PARinc. Finally,
we calculated APAR during the entire cycle or phenological
phase as the sum of the corresponding daily APAR values
between the corresponding thermal time thresholds.

We eliminated five records with likely erroneous data
because of their high grain conversion efficiency, defined as
the ratio of yield to accumulated APAR. The grain conversion
efficiency is equal to the product of RUE and HI. According
to the literature, the maximum value of RUE for a maize crop
is 3.8 g MJ−1 (Lindquist et al., 2005), while the maximum
HI is approximately 0.5 (Echarte & Andrade, 2003). Their
product results in a maximum grain conversion efficiency of
1.9 g MJ−1. The five records exceeding this threshold were
discarded due to their high probability of being erroneous.

2.6 Data analysis

The final database consisted of 1853 unique field-year obser-
vations that showed a large variation of Monteith’s model
components (Table 2). In relative terms, the highest varia-
tion among field-years was observed in yield, which varied
by 60% between the 25–75 percentiles. This was followed by
conversion efficiency (42%), total APAR and average fAPAR
throughout the cycle (both 24%), and finally PARinc (20%).
For additional details on the number of field-year observations
and average yield across regions, years, and sowing periods,
see Table S1.

We incorporated APAR during the different phenologi-
cal phases as continuous variables, and production region,
ENSO phase, and sowing period as categorical variables.
APAR during each phase was incorporated both as its raw
and quadratic value. The production region variable was based
on the grouping shown in Figure 1A. The ENSO phase was
analyzed by classifying the growing seasons into two cat-
egories based on the December–January–February quarter:
“La Niña” (seasons 2017–2018 and 2020–2021) and “Not
La Niña” (seasons 2018–2019, which corresponded to “El

Niño,” and 2019–2020, which was Neutral). This classifi-
cation was based on monthly ENSO forecasts provided by
the International Research Institute for Climate and Society
(https://iri.columbia.edu/). In the central part of our study
area, “La Niña” phases are associated with reduced rainfall
during late spring and early summer, leading to lower maize
yields (Podestá et al., 1999). The sowing period was included
as a categorical variable with two levels: “Early” or “Late.”
The classification was based on the sowing date relative to
December 1 in regions located north of latitude 32˚ S and rel-
ative to November 20 in regions located further south. Finally,
the interaction between ENSO phase and sowing period was
analyzed by grouping these two variables into four categories:
“Early—La Niña,” “Early—Not La Niña,” “Late—La Niña,”
and “Late—Not La Niña.”

To achieve the first objective (field-scale models that fore-
cast yield from APAR up to R6), we calibrated and validated
simple and multiple regression models between yield and
APAR during the entire crop cycle (VE–R6), VE–R1, R1–R6,
and the CP. We also explored whether the productive region,
the ENSO phase, or the sowing period (early- vs. late-sown)
increased the predictive power. In this way, we obtained mod-
els that predicted yield with all the available information at
the end of the crop cycle, 30 (early sowings) to 90 days (late
sowings) before harvest.

To achieve the second objective (field-scale models that
forecast yield at different stages of the crop cycle), we cal-
ibrated and validated models that predicted the yield of
each field from its sowing date onward. These models were
calibrated with information from 40 to 140 days after sow-
ing at regular intervals of 20 days. The 20-day interval is
approximate, as it was obtained by cutting every 20 days the
interpolated daily series of the MODIS product, whose origi-
nal temporal resolution was 16 days. This procedure resulted
in a “library of models” that best predicted yield given the
information available up to a certain moment in the crop cycle.

To achieve the third objective (forecast maize yield at a
regional scale throughout the crop season), we predicted the
yield of each field on the 15th day of each month through-
out the growing season (November—June). Model selection

https://iri.columbia.edu/
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F I G U R E 3 Use of the library of models to predict yield of a given field. From 40 days after sowing, yield was predicted by the corresponding
model, unless the field had reached R6, in which case it was predicted by the R6 model developed for objective 1.

followed the pattern described in Figure 3: at any given date,
we first checked if the field had reached R6, in which case it
was assigned the model validated for objective 1. Otherwise,
we assigned the best model of the library of models given
the time after its sowing date. The predictions for individ-
ual fields were averaged by region, year, and sowing period.
The regional yield prediction was compared with the observed
regional yield for each calendar date and sowing period. For
this regional-level analysis, we included the 35 combinations
of region—year—sowing period with at least 15 data point
(fields; see Table S1 for more details on the combinations
included).

For model development, we used the 5-fold cross-
validation method. This method involves randomly dividing
the dataset into five equal parts, using four for model cali-
bration and the fifth for validation, and repeating this process
until the model has been validated across all parts. To obtain
parsimonious models, we applied the following selection cri-
terion: First, we calculated the mean absolute percentage error
(MAPE, %) of a null model, which makes predictions using
only the mean yield from the calibration dataset. Then, we
calibrated all possible models with a single predictor variable
and selected the one with the lowest validation MAPE, pro-
vided that it reduced the null-model MAPE by at least 1%.
If this condition was met, we compared the new model with
the best model, including two predictor variables, provided
that the second variable further reduced the previous model
MAPE by at least 1%. This process was repeated until adding
one more predictor variable resulted in a reduction of <1% in
the validation MAPE.

In addition to MAPE, we reported model accuracy with
mean absolute error (MAE) and adjusted R2 as validation
metrics (Equations 2–4):

MAPE (%) = 1
𝑛

𝑛∑
𝑖=1

||||Observed yield − Predicted yield
Observed yield

||||
×100 (2)

MAE
(
t ha−1

)
= 1

𝑛

𝑛∑
𝑖=1

|Observed yield − Predicted yield|
(3)

𝑅
2
adj =

((
1 − 𝑅

2) × (𝑛 − 1)
𝑛 − 𝑘 − 1

)
(4)

where n is the total number of observations, k is the number
of predictor variables, and R2 is the standard coefficient of
determination.

All analyses were performed using the statistical software
“R” and the “caret” and “tidyverse” packages (Kuhn, 2008; R
Core Team, 2021; Wickham et al., 2019).

3 RESULTS

3.1 Field-scale yield forecasts at
physiological maturity

Based solely on APAR, the spatial and temporal variation
of maize yield in Argentina was best predicted at R6 by the
radiation absorbed during the reproductive phase (R1–R6,
R2

adj = 0.59, MAE = 1.3 t ha−1, MAPE = 21%, Figure 4A).
This period had greater predictive power than either the
vegetative phase (VE—R1, R2

adj = 0.11, MAE = 2 t ha−1,
MAPE = 35%) or the CP (R2

adj = 0.30, MAE = 1.79 t ha−1,
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F I G U R E 4 Validation of models that predicted yield based on absorbed radiation (absorbed photosynthetically active radiation [APAR]) up to
R6. Each dot is an observation of a field year. (A) Field-scale observed yield as a function of APAR during the reproductive phase. The red solid line
represents the prediction of the model. Yield = −3.22 + 0.027 APARR1–R6. (B) Observed yield as a function of predicted yield by the model
Yield = 0.17 + 0.000032 APARR1–R6ˆ2 + 0.0057 APARVE–R1, which considers radiation absorbed during the reproductive (quadratic value) and
vegetative phases. The dotted black line represents the line y = x. The red solid line represents the fit between observed and predicted yield.

MAPE = 30%). Combining the APAR during the vegetative
and reproductive phases into a multiple regression model
had greater predictive power than each phase individually
(R2

adj = 0.63, MAE = 1.26 t ha−1, MAPE = 20%, Figure 4B)
or the entire cycle (VE—R6, R2

adj = 0.47, MAE = 1.5
t ha−1, MAPE = 25%). In other words, distinguishing
the phenological phase in which radiation was absorbed
significantly increased the predictive power of the model
compared to considering the APAR throughout the entire
cycle (R2

adj = 0.63 vs 0.47). This multiple regression model
incorporated the effect of the APAR during the reproductive
phase with its quadratic term.

The predictive power of the model notably increased by
including the production region as a categorical variable
(R2

adj = 0.72, MAE = 1.06 t ha−1, MAPE = 18%), whereas it
was just marginally increased by including the ENSO phase
or the sowing period (early vs. late). The models for each
region had a slightly higher predictive power thanks to the
inclusion of phenological phases or ENSO in some regions
(R2

adj = 0.74, MAE = 1.03 t ha−1, MAPE = 16%, Figure 5).
The fit and residuals varied among the production regions
(Figures 5 and 6). For example, R2

adj ranged from 0.4 to 0.88,
MAE from 0.79 to 1.35 t ha−1, and MAPE from 11.2% to
26.8%. In relative terms, 10 out of eleven regions exhibited
good error metrics, with MAPE below 20%, whereas models
were not accurate for region 11, which had a MAPE of 26.8%.

Ten out of the eleven regions included the APAR during the
reproductive phase (Table 3), whereas one incorporated only
the radiation absorbed during the entire cycle (region 11). In
turn, two regions incorporated the effect of APAR during the
CP (regions 1 and 6). Regarding categorical variables, only
one region incorporated the effect of the interaction between

ENSO phase and sowing period (region 6). In some regions,
the sowing period was not a candidate variable because they
grew either exclusively early (e.g., region 5) or late maize
crops (e.g., regions 1 and 2).

3.2 Field-scale yield forecasts at different
stages of the crop cycle

As the crop cycle progressed from emergence to R6, more
information about APAR was incorporated, and yield was pre-
dicted more accurately (Figures 7 and 8; Table S2). Globally,
from 40 days after sowing to R6, R2

adj increased from 0.37 to
0.74, MAE decreased from 1.62 to 1 t ha−1, and MAPE from
29% to 16%. Again, fit and errors depended on the region.
The increase in R2

adj and decrease in MAE and MAPE were
larger in some regions (e.g., regions 2 and 6) than others (e.g.,
regions 1 and 5). The latter was due to low final adjustment
(e.g., region 1) or high accuracy of early-cycle predictions
(e.g., region 5).

The variables included in the models changed as the crop
progressed (Figure 9). The earliest models mainly considered
the ENSO phase or the sowing period, and only a few incorpo-
rated APAR variables. In fact, for regions 1 and 7, predicting
yield using only the mean was the best-performing model (see
null R2

adj values in Figure 7). As the crop cycle progressed,
more satellite images became available for each field, provid-
ing additional information that increased the importance of
APAR in the models. In the early models, APAR during the
elapsed period was the most important variable. Later, when
it was possible to differentiate APAR during the reproduc-
tive phase, this variable gained participation in the models.
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F I G U R E 5 Observed yield as a function of predicted yield for the global database (top left panel, blue dots) and each region. Each dot
represents a field year. The black dotted line represents the y = x line. The red solid line represents the fit between observed and predicted yield.
Predicted values were obtained from the models for each region (Table 3). For the location of the regions, see Figure 1A.

F I G U R E 6 Performance by region of field-scale models with information up to R6. (A) Validation R2
adj of the models for each region as in

Table 3. (B) mean absolute error (MAE) for each region. (C) Mean absolute percentage error (MAPE) for each region.

APAR during the CP of the crop was important for mod-
els between 80 and 120 days after sowing, probably because
flowering occurs around that time window. Subsequently,

its contribution to the models decreased, probably because
it was encompassed by APAR during the reproductive
phase.
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T A B L E 3 Models for forecasting maize yield using all available information up to R6 for each region. Yield: kg ha−1, absorbed
photosynthetically active radiation (APAR) (absorbed radiation): MJ m−2.

Region Formula
Region 1 Yield = −795 + 0.019 × APARR1– R6ˆ2 + 30.9555 × APARCP

Region 2 Yield = −5605 + 29.0735 × APARR1–R6 + 8.538 × APARVE–R1

Region 3 Yield = −4540 + 27.373 × APARR1–R6 + 0.0164 × APARVE–R1ˆ2

Region 4 Yield = −977 + 0.0401 × APARR1–R6ˆ2 + 8.9592 × APARVE–R1

Region 5 Yield = −1652 + 11.5195 × APARR1– R6 + 0.0058 × APARVE–R6ˆ2

Region 6 Yield = −5447 + 24.0066 × APARR1– R6 + 0.0538 × APARCPˆ2 −209 × “ES-Niña” −122 × “LS-Niña” −988 ×
“LS-Not Niña”

Region 7 Yield = −1066 + 0.0318 × APARR1–R6ˆ2 + 12.2376 × APARVE–R1

Region 8 Yield = −2522 + 18.8998 × APARR1– R6 + 0.0042 × APARVE–R6ˆ2

Region 9 Yield = 1003 + 0.0291 × APARR1– R6ˆ2 + 0.0107 × APARVE–R1ˆ2

Region 10 Yield = −6314 + 22.7792 × APARR1– R6 + 11.902 × APARVE–R1

Region 11 Yield = −5829 + 16.3803 × APARVE–R6

Note: R1–R6: reproductive phase (silking—physiological maturity). VE—R1: vegetative phase (emergence—silking). VE—R6: complete crop cycle (emergence—
physiological maturity). CP: critical period. The symbol “

ˆ2” means that the variable was incorporated with its quadratic value. “ES-Niña”: Early sowing and La Niña
ENSO phase. “LS-Niña”: Late sowing and La Niña ENSO phase. “ES-Not Niña”: Early sowing and Not La Niña ENSO phase. The model for region 6 must be understood
as: Yield (kg/ha) = −5447 + 24.0066 × APARR1–R6 + 0.0538 × APARCPˆ2 − (209 IF “Early Sowing” and “La Niña”) − (122 IF “Late Sowing” and “La Niña”) − (988
IF “Late Sowing” & “Not La Niña”).

F I G U R E 7 R2
adj as a function of days after sowing employed for yield forecast for each region. The top left panel refers to the R2 of the global

database. For the location of the regions, see Figure 1A.

3.3 Regional-scale yield forecasts
throughout the growing season

Model accuracy also increased as the growing season pro-
gressed and the predictions were averaged by region instead
of individual fields (Figure 10). On the one hand, the progress

of the growing season increased accuracy because more fields
entered production and more information on APAR was accu-
mulated for each field. On the other hand, as expected, the
regional-scale predictions were more accurate than field-
scale ones because they averaged out errors (Figures 5–8
vs. Figure 10). For early-sown maize, good accuracy was
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F I G U R E 8 Mean absolute error (MAE, t ha−1) as a function of days after sowing employed for yield forecast for each region. The top left
panel refers to the mean absolute error (MAE) of the global database. Numbers above the columns refer to the mean absolute percentage error
(MAPE, %) for the first and last forecast time during the crop cycle. For the location of the regions, see Figure 1A.

achieved in February, with an MAE of 0.35 t ha−1 (MAPE
of 4.1%), while for late sowings, it was in May, with an MAE
of 0.30 t ha−1 (MAPE of 3.8%).

4 DISCUSSION

Based on satellite information within the framework of Mon-
teith’s model, we explained and forecasted maize yield under
a wide range of environmental conditions and at different
scales. The explanatory and forecasting power of our mod-
els ranks within the top tier of the crop yield models reviewed
by Schauberger et al. (2020). In addition, our study addressed
specific challenges. We worked at the field scale, whereas
most other studies forecast at coarser scales, with only a few
recent exceptions at the field scale with broad spatio-temporal
coverage (Brinkhoff et al., 2024; Deines et al., 2021). Our
errors were based on independent validation, whereas half
of the revised studies by Schauberger et al. (2020) reported
calibration errors. Our models are low-input, as they only
require sowing date and a polygon with field boundaries as
user inputs. Additionally, they then utilize satellite imagery,
temperature, and incident radiation data, all of which are eas-
ily obtainable with minimal programming skills (Gorelick
et al., 2017). In contrast, many other models rely on extensive
environmental and management field data, which are rarely
available across fields and years. Finally, our models are eas-
ily interpretable in terms of eco-physiological and agronomic

factors, whereas others rely on vegetation indices or “black-
box” approaches. Therefore, our models serve as a diagnostic
tool that allows for the partitioning of yield variation into com-
ponents such as radiation absorption during different periods
within the crop cycle and its conversion efficiency to yield,
which encompasses the variation in RUE and HI.

Forecasting field-scale yield at R6 was a matter of par-
titioning absorbed radiation (APAR) by phenology, inferred
from temperature, and differentiating production regions. The
APAR up to R6 accounted for only 47% of yield variation.
However, APAR by phenological phases accounted for 63%
of the variation because the model assigned a higher weight
to the reproductive phase, which likely captures a fraction of
the variation in HI, as the numerical components of yield,
such as grain number and weight, are determined during this
phase (Cerrudo et al., 2013; Maddonni et al., 1998; Otegui &
Bonhomme, 1998). Additionally, specific APAR-based mod-
els for each region accounted for 74% of the overall yield
variation. These regions have contrasting soil, climate, and
crop management characteristics, thus capturing part of the
variation in RUE and HI (Andrade et al., 1992, 1993; Echarte
& Andrade, 2003). A key strength of APAR-based models is
their ability to capture the effects of environmental stresses,
such as water and nutrient limitations, through the radiation
absorption component (fAPAR). In summary, based on this
work, any stakeholder can forecast field-level maize yield at
the R6 stage in Argentina with an average error of 1 t ha−1.
In Argentina, the R6 stage usually occurs 30 days before
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F I G U R E 9 Number of regions that incorporated each variable into the models as the days after sowing advanced. Absorbed photosynthetically
active radiation (APAR): absorbed radiation (MJ m−2). VE to R6: emergence to physiological maturity. VE to R1: emergence to silking. R1 to R6:
silking to physiological maturity. Critical period: 220˚C the day before silking (R1) and 200˚C the day after. ENSO, El Niño-Southern Oscillation.

F I G U R E 1 0 Regional observed yield as a function of regional predicted yield. Each panel represents a different calendar date of the growing
season. Each point represents a unique combination of region, year, and sowing period. A total of 35 unique combinations were used, 17
corresponding to early sowings (red dots) and 18 to late sowings (blue dots).
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harvest for early sowings and up to 90 days for late sowings.
To obtain this forecast, our models only require the sowing
date and the location of the field, which opens possibilities
for the development of computer applications to meet this
demand.

Forecasting yield at the field scale earlier than R6 is also
valuable and challenging. Our results suggest that any ana-
lysts attempting to forecast yield at the field scale may start
with a set of baseline data and then may incorporate infor-
mation about APAR and its impact on yield. The variables
that best forecast field-level yield early on are the region
where the field is located, the sowing period, and the fore-
cast of the ENSO phase. Thus, the best forecast at the field
scale at that time is simply the region yield average under
the analyzed context (potentially weighted by knowledge of
the specific field’s yield potential). Naturally, in some regions
of Argentina, either the ENSO phase does not have a marked
effect, or the sowing date is exclusively early or late (Otegui
et al., 2021). In these cases, these variables lack explana-
tory power. As the crop cycle progresses, differences in
APAR among fields become apparent, and the accuracy of
the forecasts increases. Further into the crop cycle, APAR
can be differentiated by phenological phase and consequently
improve forecasts. Thus, APAR during the reproductive phase
becomes more important. APAR during the CP is only sig-
nificant around crop flowering when grain number is defined
(80–120 days after sowing; Cerrudo et al., 2013). Afterward,
APAR during the reproductive phase replaces this variable as
it integrates and adds information about the other numerical
component of yield: grain weight. This finding is supported
by the large effect of crop growth during the grain-filling
period on final maize kernel weight (Borrás et al., 2004).
These responses turn the kernel weight determination period
as important as the kernel set CP in many field conditions
(Otegui et al., 2021). The prevailing role of APAR in explain-
ing yield should not be interpreted as a lack of effect of sowing
period or ENSO phase on yield. Rather, APAR captures those
effects and more.

Analysts attempting to forecast maize yield in Argentina at
a regional scale throughout the growing season face a dynamic
scenario of fields entering production at different times in dif-
ferent regions and two contrasting production systems: early
and late sowings. According to the results of this study, they
can rely on a library of models that will provide the best
forecast for each field at each time point. Additionally, by
averaging the forecasts at the regional scale, they can forecast
yield with higher accuracy than at the field scale. This gain in
accuracy at a coarser level is in part due to the cancellation of
errors when aggregating predictions and the lower variability
at this scale (Deines et al., 2021). In Argentina, forecasts at
the regional scale need to be differentiated according to the
early and late sowing systems. In this study, the errors did not
differ between them, demonstrating that the developed models

are applicable even in contrasting production systems. Simply
put, the two systems are incorporated into the growing season
at different periods. Therefore, the best forecast is achieved
in February for early sowings (30 days before harvest) and
in May for late sowings (up to 90 days before harvest). When
combined with an estimation of the harvested area, the harvest
volume can be estimated with a known error.

We speculate here on the sources of the variation not
accounted for by our models. Likely, some are errors in esti-
mating yield and APAR. Yield in our dataset was estimated at
the farm level, based on the grain leaving the field and an esti-
mation of harvested area, both subject to error. The sources
of error behind our estimate of APAR are complex. Field
boundaries were not perfectly delimited, pixels did not cover
the entire surface, and NDVI was transformed into fAPAR
through calibration models, which may be particularly uncer-
tain at early growth stages due to low canopy cover and soil or
residue background effects (Gitelson et al., 2014). In addition,
using monthly PARinc and 16-day NDVI may smooth short-
term variability and increase APAR uncertainty during rapid
canopy growth. More interestingly, however, what our mod-
els did not capture of yield variations speaks of the variation
of RUE and HI; in other words, the true variation of the grain
conversion efficiency from radiation to yield. RUE is affected
by above-optimum (Rattalino Edreira & Otegui, 2012) and
suboptimum (Andrade et al., 1993) temperatures, which may
modify conversion efficiency differently across regions, sow-
ing dates, and growth stages. Similarly, the HI is defined all
along the grain-filling period (Muchow et al., 1990), being
very stable in most growth conditions but particularly sensi-
tive to stress during the CP (Sinclair et al., 1990). In addition,
RUE and HI may interact with APAR (Earl & Davis, 2003),
which determines that they are not merely the residuals of the
model based on APAR. By discriminating APAR by phenol-
ogy, our models probably accounted for a great proportion of
the variation of RUE, HI, and this interaction. Yet, on aver-
age, up to 1 t ha−1 of yield variation (16%) may be attributed
to unaccounted variation of conversion efficiency, including
grain lost before harvest. In fact, grain conversion efficiency
varied more than APAR across the dataset (Table 2). Under-
standing this variation can provide information about specific
maize genotypes or environments that convert APAR into
yield more or less efficiently—for example, by comparing
fields with and without stress conditions such as drought or
nutrient limitations (Andrade et al., 1993; Chazarreta et al.,
2024; Kiniry, 1990; Neiff et al., 2016). This type of conversion
efficiency analysis may guide management practices toward
maximizing this component and ultimately enhancing crop
yield.

A robust yield estimation system could benefit the agri-
cultural sector by forecasting and explaining yield variations
at different scales. In terms of forecasting at the field and
farm scales, yield forecasts allow farmers to evaluate the
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progress of their crops in real-time and make decisions that
improve their harvest and storage logistics. Agricultural credit
and insurance companies would also improve their payment
systems and reduce their operating costs at the field level.
At larger scales, regional yield forecasts allow governments
and NGOs to design policies and mobilize resources more
efficiently in critical situations (e.g., drought). Grain sup-
ply chain agents, such as collectors or exporting companies,
would also benefit from such regional forecasts. Collectively,
all these benefits may have larger impacts on final economic
revenue than environmental limitations to crop growth (Rat-
talino Edreira et al., 2018). In terms of explaining yield, such
a system would allow producers and technicians to analyze
the past agricultural seasons with information on the radia-
tion absorbed by the crop. In this way, yield variation could
be decomposed into variation in radiation absorption (PAR-
inc and fAPAR) and conversion efficiency to yield (RUE and
HI). Additionally, the system would allow us to detect fields
whose expected yield varied throughout the season. For exam-
ple, fields that started with “high” yield estimates and ended
with “low” estimates, or vice versa, may inform on the envi-
ronmental controls that determined final yield. In summary,
having a crop yield estimation system during the cycle would
significantly benefit a large part of the agricultural sector at a
range of scales.

5 CONCLUSION

In this study, we developed models that forecast maize yield
at the field and regional scales, using only the sowing date
and field location as inputs requested from the users. These
models were based on the crop’s absorbed radiation estimated
from satellites and easily obtainable information such as the
ENSO phase or the sowing period. The forecasts at physiolog-
ical maturity, 30–90 days before harvest, had an average error
of 1 t ha−1 at the field scale and 0.3 t ha−1 at the regional
scale. As the forecast was attempted earlier than the physio-
logical maturity, the error gradually increased due to the loss
of information on absorbed radiation. In addition to provid-
ing a yield forecast, the models can be used to understand the
environmental controls that defined yield in the past. Thus, the
results of this study allow different stakeholders in the maize
supply chain to obtain accurate information for decision-
making based on objective yield data from one of the world’s
most important areas in terms of maize production and
export.
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